PHYSICS

Main Concepts: Physical and Non-Physical Quantities

1. Physical Quantities

- **Definition:** Quantities that can be **measured** directly or indirectly using tools or instruments.
- **Examples:** Length, volume, density, time, temperature.
- **Importance:** These are the foundation of **physics**; laws and principles are based on them.

2. Non-Physical Quantities

- **Definition:** Quantities that **cannot be measured** with instruments; based on human **perception or emotions**.
- **Examples:** Love, fear, wisdom, beauty.
- Use: Help understand human behavior and social interactions; studied through qualitative methods or surveys.

3. Need for Standard Units

- In the past, people used body parts (hand, foot) for measurement caused **confusion**.
- A standard unit ensures measurements are consistent and reliable.

4. What is Measurement?

- **Definition:** A measurement includes **two parts**:
 - A number (value)
 - A **unit** (standard quantity)
- Note: A number alone is meaningless without a unit.

5. International System of Units (SI Units)

- Why needed? Different countries used different units → caused problems in trade and scientific communication.
- Established in 1961 by the international committee.
- SI system includes 7 base units used worldwide.

• SI units allow easy comparison and sharing of scientific data.

6. Derived Units

- **Derived units** are units that are **formed using base units**.
- They are used to measure physical quantities like **area**, **volume**, **speed**, **force**, **pressure**, and **electric charge**.
- These units are **not basic** themselves but are made by **combining base units**.

Examples:

- Area = Length \times Width = metre \times metre = metre² (m²)
- Speed = Distance / Time = metre / second = m/s
- Volume = metre \times metre \times metre = m³

7. SI Prefixes

- The **SI system** is a **decimal system**.
- Prefixes are used to write very large or very small values using powers of 10.
- This makes numbers easier to read and write.

Examples:

- 50,000,000 m = 5×10^7 m
- 0.00004 m = 4×10^{-5} m

8. Scientific Notation

□ What is Scientific Notation?

- A short way to write very large or very small numbers.
- It helps in saving space, easy reading, and quick calculations.
- Numbers are written as:
 - $a \times 10^{n}$, where:
 - **a** is a number between **1 and 9**
 - \circ **n** is the **power of 10**

9. How to Write in Scientific Notation?

- 1. Move the decimal point until there's only one non-zero digit on the left.
- 2. Count the number of places you moved the decimal:
 - Move left \rightarrow exponent is **positive**

Easy Notes

 $\circ \quad \text{Move right} \rightarrow \text{exponent is negative}$

∕∕Examples:

- 138,000,000 km
 → 1.38 × 10⁸ km (Decimal moved 8 places to the left)
- 0.00000000052 m (Diameter of hydrogen atom) \rightarrow 5.2 × 10⁻¹¹ m (Decimal moved 11 places to the right)

Important Notes:

- Addition/Subtraction Rule: Exponents must be same.
- Prefix Care: Always use proper symbols (e.g., *s*, *m*, *kg*) not abbreviations.
- No Plurals in Symbols:

 ☆10 mN ×10 mNs
- Capitalization Rule:
 - Unit names = lowercase (metre, second)
 - Unit symbols = lowercase (m, s), except L for litre
 - Only **Celsius** uses capital (°C)

Vernier Callipers – Simple Explanation

10. What is a Vernier Callipers?

Vernier Callipers is a tool used to **measure small lengths** very accurately — up to **0.1 mm** (1/10th of a millimeter). It is used to measure:

It is used to measure:

- Thickness of an object
- Inner and outer diameter
- **Depth** of a hollow object

11. Parts of Vernier Callipers

1. Main Scale

- Fixed scale
- Each division = 1 mm
- 2. Vernier Scale
 - Sliding scale
 - 9 mm long, divided into 10 parts
 - Each part = 0.9 mm
- 3. Least Count

- Smallest value the instrument can measure
- Least Count = 1 mm 0.9 mm = 0.1 mm
- 4. Jaws A & B
 - Measure **external** size (like the thickness of a rod)
- 5. Jaws C & D
 - Measure **internal** size (like the diameter of a hole)
- 6. Depth Rod
 - Measures **depth** of a hollow object (like a tube)

12. How to Measure with Vernier Callipers

- 1. **Place** the object between the jaws.
- 2. Note the main scale reading just before the "0" of Vernier scale.
- 3. Find the matching line on the Vernier scale that lines up exactly with a line on the main scale.
- 4. Use the formula:

□ Length = Main Scale Reading + (Vernier Scale Reading × Least Count) Example:

Main scale = 4.3 cmVernier scale = 4th line matches Least Count = 0.01 cmLength = $4.3 + (4 \times 0.01) = 4.34 \text{ cm}$

13. Zero Error

Sometimes the instrument shows an error even when it should show zero.

- If Vernier 0 is **right of main 0** \rightarrow **Positive Error** (Subtract from result)
- If Vernier 0 is left of main $0 \rightarrow$ Negative Error (Add to result)

How to Find Zero Error:

- 1. Check which Vernier division lines up with the main scale.
- 2. Multiply that number by the least count.
- 3. Apply correction (+ or -) based on error type.

Fun Fact

□ **Inventor**: Pierre Vernier (France), in **1631**

 \Box **Parallax Error**: Happens when eye is not straight with the scale. Always view from straight above.

Measuring Tape: It can measure 1 mm to several metres. Its least count is 1 mm. It is used to measure longer distances.

□ Activity to Try

Find thickness of one coin:

- 1. Stack 10 coins \rightarrow Measure total height with a meter rule
- 2. Divide by $10 \rightarrow$ Average thickness
- 3. Measure one coin with Vernier Callipers
- 4. Compare both results in class!

Micrometer Screw Gauge - Easy Notes

What is it used for?

• To measure very small things, like the diameter of a wire or thickness of a metal sheet.

14. Important Parts:

1. Main Scale

- Found on the **sleeve**.
- Each marking = **0.5 mm** (sometimes **1 mm**).

2. Circular Scale

- Found on the **thimble**.
- Has **50 divisions** (sometimes **100 divisions**).

15. Pitch of Screw Gauge:

Distance moved by spindle in one full turn of thimble. Example: **0.5 mm** per full turn.

16. Least Count (L.C.):

The smallest measurement that can be read. Formula:

Least count = Pitch of the screw gauge / No. of divisions on the circular scale

0.5 mm/ 50 = 0.01 mm

17. Zero Error:

- No Zero Error:
 - Zero of circular scale is exactly at horizontal line.
- Positive Zero Error:
 - Zero of circular scale is **above** the horizontal line.
 - Add the error to the reading.
- Negative Zero Error:
 - Zero of circular scale is **below** the horizontal line.
 - **Subtract** the error from the reading.
 - **18.** How to Measure with Screw Gauge:
- 1. Read the main scale (sleeve) marking just before thimble.
- 2. Read the circular scale marking which lines up with the main scale.
- 3. Formula:

Thickness = Main scale reading + (Circular scale reading × Least Count)

Example:

- Main Scale: 6.5 mm
- Circular Scale: 25 divisions
- L.C.: 0.01 mm

Calculation:

6.5+(25×0.01)=6.5+0.25=6.75 mm

Extra Tip:

- The most accurate balance for measuring mass is the **digital electronic balance**.
 - It can measure mass as small as **0.1 mg**.

Mass Measuring Instruments - Easy Notes

19.Important Points:

- Mass and Weight are different in Physics.
 - Mass: Amount of matter in an object.
 - Weight: Force with which Earth pulls an object (can be measured with a spring balance).

• Mass is measured by comparing it with known masses.

• This process is called **weighing**.

20. Physical Balance:

- Used in **laboratories** to measure mass **accurately**.
- Works on the **principle of levers**.

Steps to Use a Physical Balance:

- 1. Level the balance using the levelling screws until the plumb line is exactly above the mark.
- 2. Raise the pans by turning the knob.
- 3. Check if the beam is horizontal and the pointer is at the center.
 o If not, adjust using balancing screws.
- 4. Place the object to be measured on the left pan.
- 5. Place known standard weights on the right pan using forceps (special tool for holding weights).
- 6. Adjust until the **pointer is at zero** or swings equally on both sides.
- 7. The **total weight** placed on the right pan = **mass of the object**.

21.Key Definitions:

- Mass:
 - The amount of matter in an object.
 - Weight:
 - The gravitational force acting on an object.
- Weighing:
 - Finding the mass by comparing it with standard known masses.

22.

Time Measuring Instruments - Easy Notes

Important Points:

- Stopwatch is used to measure the duration of an event.
- It has **two needles**:
 - One for **seconds**
 - One for **minutes**
- The **dial** is divided into **30 big divisions**.
 - Each big division has **10 small divisions**.

Easy Notes

- Each small division = 1/10 second.
- Least Count:
 - \circ The smallest time that can be measured is **one-tenth** (1/10) of a second.

23. How to use a Mechanical Stopwatch:

- 2. Press the top knob to **start** the watch.
- 3. Press the knob again to **stop** the watch.
- 4. Press again to **reset** the needles to zero.

24. Digital Stopwatch:

- Modern digital stopwatches are also available.
- They can measure even smaller time intervals:
 - One-hundredth (1/100) of a second.

25. Volume Measuring Instruments

Measuring Cylinder

A measuring cylinder is a transparent tube (glass or plastic) marked with a scale in millilitres (mL) or cubic centimetres (cm³). It is commonly used to measure the volume of liquids and irregular solids (via water displacement).

26. How to Use It Correctly:

- Place the cylinder on a **flat surface**.
- Keep your eye level with the liquid surface.
- Liquids form a curved surface called a meniscus.
 - Water (concave meniscus): Read from the bottom of the curve.
 - Mercury (convex meniscus): Read from the top of the curve.

Note:

To measure the volume of a **non-dissolving solid**, note the **rise in water level** after submerging the solid. The difference gives the solid's volume.

27.Displacement Can Method

When a solid is too large to fit into a measuring cylinder, a **displacement (or overflow) can** is used to measure its volume.

Easy Notes

Procedure:

- 1. Place the can on a level surface.
- 2. Fill it with water until it begins to overflow from the side spout.
- 3. Wait until overflow stops, ensuring the water level is exactly at the spout.
- 4. Tie a thread to the solid and lower it gently into the can.
- 5. **Collect** the displaced water in a beaker.
- 6. Measure the collected water using a measuring cylinder.

 \checkmark The volume of displaced water equals the **volume of the solid**.

Concept:

This method is based on **Archimedes' principle**—a solid submerged in a liquid displaces a volume of liquid equal to its own volume.

Errors in Measurement

Do You Know?

Even with the widespread use of SI units, some old units are still in use—e.g., font size is measured in **points**, where **1 point = 1/72 inch = 0.35 mm**.

28. Why Do Errors Occur?

No measurement is perfectly accurate. All instruments have limitations, and human involvement introduces errors. We aim to **minimize** these errors and always mention the **estimated uncertainty** in any scientific measurement.

Types of Experimental Errors

29. Human Errors

- Caused by carelessness, poor technique, or misreading instruments (e.g., wrong eye position, reaction time).
- Minimized by training, focusing, and using digital tools.

30. Systematic Errors

- Affect all measurements consistently due to a fixed cause (e.g., zero error, poor calibration).
- Minimized by comparing with standard instruments and applying correction.

31.Random Errors

- Unpredictable changes due to environmental factors (e.g., temperature, voltage).
- Minimized by taking multiple readings and using average values.

32. Uncertainty in Measurement

Every measuring instrument has a **least count**—the smallest division it can measure. Uncertainty is often \pm half of the least count.

For example:

• If a ruler is marked in mm, and a length lies between 10.3 cm and 10.4 cm, the uncertainty is ±0.05 cm.

Use **averages** in repeated measurements (e.g., timing 30 oscillations instead of one) to reduce uncertainty.

33. Significant Figures

Significant figures show how reliable a measurement is. They include:

- All certain digits, and
- The first uncertain digit.

34. Rules:

- Digits 1–9 are significant.
- Zeros **between** digits are significant: $5.06 \rightarrow 3$ s.f.
- Zeros **before** digits are not: $0.0034 \rightarrow 2$ s.f.
- Zeros after decimal are significant: $2.40 \rightarrow 3$ s.f.
- In scientific notation, all digits before $\times 10$ are significant.

35. Precision vs Accuracy

- **Precision** = Repeated values are close to each other.
- Accuracy = Values are close to the true value.

Example:

Arrows on a target:

Easy Notes

- Grouped together = Precise
- Hitting bulls eye = Accurate
- Both = Precise and Accurate

Smaller least count \rightarrow Higher **precision** More significant figures \rightarrow Better **accuracy**

36. Rounding Off Rules

- If the digit after rounding place is >5, increase the last kept digit.
- If **<5**, keep the last digit as it is.
- If exactly 5:
 - If previous digit is **odd**, round up.
 - If **even**, leave unchanged.

Examples:

- $2.512 \rightarrow 2.5$ (to 2 s.f.)
- $3.4567 \rightarrow 3.46$ (to 3 s.f.)
- $4.45 \rightarrow 4.4$, but $4.55 \rightarrow 4.6$ (to 2 s.f.)

Key Takeaway

Every measurement involves uncertainty.

Always aim for **precision**, **accuracy**, and **clarity** using appropriate instruments, significant figures, and rounding rules.

11