Exercise

A. Multiple-Choice Questions (MCQs)

Tick (✓) the correct answer.

- Which of the following Boolean expressions represents the OR operation?
 (a) A ⋅ B
 (b) A + B
 (c) A
 (d) A ⊕ B
- 2. What is the dual of the Boolean expression $\mathbf{A} \cdot \mathbf{0} = \mathbf{0}$? (a) $\mathbf{A} + \mathbf{1} = \mathbf{1}$ (b) $\mathbf{A} + \mathbf{0} = \mathbf{A}$ (c) $\mathbf{A} \cdot \mathbf{1} = \mathbf{A}$ (d) $\mathbf{A} \cdot \mathbf{0} = \mathbf{0}$
- 3. Which logic gate gives output "true" only when both inputs are true? (a) OR gate (b) AND gate (c) XOR gate (d) NOT gate
- 4. In a half-adder circuit, the carry is generated by which operation?
 (a) XOR operation
 (b) AND operation
 (c) OR operation
 (d) NOT operation
- 5. What is the decimal equivalent of binary number 1101?
 (a) 11
 (b) 12
 (c) 13
 (d) 14

B. Short Questions

- Define a Boolean function and give an example. A Boolean function is an expression made using Boolean variables and logical operations like AND, OR, and NOT. Example: F = A + B
- 2. What is the significance of the truth table in digital logic? A truth table shows all possible input values and their corresponding output. It helps understand how a logic gate or circuit behaves.
- 3. Explain the difference between analog and digital signals.
- Analog signals are continuous and vary smoothly.
 Digital signals are in discrete steps, usually only 0 and 1.
- Describe the function of a NOT gate with its truth table.
 A NOT gate inverts the input. If input is 1, output is 0 and vice versa.

| Input | Output |

|-----|

```
011
```

- |1|0|
- 5. What is the purpose of a Karnaugh map in simplifying Boolean expressions? A Karnaugh Map (K-Map) is used to simplify Boolean expressions easily by grouping adjacent 1s in a truth table format.

www.ilmwala.com

Easy Notes

C. Long Questions (Detailed Answers)

1. Explain the usage of Boolean functions in computers.

Boolean functions are used in computers for decision-making, controlling circuits, building logic gates, and simplifying complex logic in programming and hardware.

 Describe how to construct a truth table for a Boolean expression with an example. List all possible inputs (like A, B), then calculate the output for each. Example for F = A + B:

3. Describe the concept of duality in Boolean algebra and give an example. Duality means replacing + with · and 0 with 1 (and vice versa) in a Boolean expression.

Example: $A \cdot 0 = 0 \Rightarrow$ Dual: A + 1 = 1

4. Compare half-adders and full-adders with truth tables and Boolean expressions.

Adds 2 bits Adds 3 bits (including carry)

Sum = $A \oplus B$ Sum = $A \oplus B \oplus$ Cin

Carry = $A \cdot B$ Carry = $(A \cdot B) + (Cin \cdot (A \oplus B))$

Truth table (Half-Adder):

Α	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

5. How do Karnaugh maps simplify Boolean expressions? Explain with steps. K-Maps simplify expressions by grouping 1s in adjacent cells. This removes redundant variables and gives the simplest form of the Boolean expression. Steps:

www.ilmwala.com

Easy Notes

- Draw K-map with required variables.
- Fill it using the truth table.
- Group adjacent 1s in sizes of 1, 2, 4, or 8.
- Write the simplified expression from the groups.
- 6. Design a 4-bit binary adder using half and full adders.
- Use 1 half-adder for the first bit.
- Use 3 full-adders for the remaining bits.
- Each full-adder takes a carry input from the previous stage.
- Draw circuit with connections and write Boolean expressions for each stage.
- 7. Simplify the Boolean function using Boolean algebra rules:
 F(A, B) = A B + A B
 Solution:

 $A \cdot B + A \cdot B = A (B + B) = A (1) = A$

- 8. Use De Morgan's laws to simplify the function:
 F(A, B, C) = A + B + AC
 No negations here. But applying laws if needed:
 If the expression were ¬(A + B + AC), it becomes:
 ¬A · ¬B · ¬A + ¬C
- 9. Simplify the following expressions:

(a) $\mathbf{A} + \mathbf{B} \cdot (\mathbf{A} + \mathbf{B})$ Apply distributive: $\mathbf{A} + \mathbf{A} \cdot \mathbf{B} + \mathbf{B} \cdot \mathbf{B} = \mathbf{A} + \mathbf{A} \cdot \mathbf{B} + \mathbf{B} = \mathbf{A} + \mathbf{I}$

(b) **(A + B) · (A + B)** Same expression: = A + B

(c) $\mathbf{A} + \mathbf{A} \cdot (\mathbf{B} + \mathbf{C})$ Apply Absorption Law: $\mathbf{A} + \mathbf{A} \cdot \mathbf{X} = \mathbf{A} \Rightarrow \mathbf{A} + \mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A}$

(d) $\mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{B}$ = $\mathbf{A} \cdot (\mathbf{B} + \mathbf{B}) = \mathbf{A} \cdot \mathbf{1} = \mathbf{A}$

(e) $(\mathbf{A} \cdot \mathbf{B}) + (\mathbf{A} \cdot \mathbf{B})$ = $\mathbf{A} \cdot (\mathbf{B} + \mathbf{B}) = \mathbf{A} \cdot \mathbf{1} = \mathbf{A}$